Infinite Series

Convergence & Divergence Tests

Let $\sum a_k$ and $\sum b_k$ be series.

Test	Statement of Theorem	Application Notes
Divergence Test	If $\lim_{k\to\infty} a_k \neq 0$ then the series diverges. The converse is not necessarily true.	Shows only divergence.
Integral Test	If f is a function that is <i>continuous</i> , <i>decreasing</i> , and <i>positive</i> on an interval $[a, +\infty)$ such that and for all $k \ge a$ $a_k = f(k)$, then $\sum_{k=1}^{\infty} a_k$ and $\int_{a}^{+\infty} f(x) dx$ both converge, or both diverge.	Use if $f(x)$ is easy to integrate. Does <i>not</i> mean integral and series have same value.
Direct Comparison Test	 Let ∑a_k and ∑b_k be series with <i>nonnegative terms</i>. If a_k ≤ b_k for all k greater than some number, then (a) If ∑a_k diverges both series diverge. (b) If ∑b_k converges both series converge. 	Harder to apply than other tests. Requires a suitable comparison series to be chosen.
Limit Comparison Test	 Given ∑a_k and ∑b_k with <i>nonnegative terms</i>, if we define ρ ≜ lim a_k/b_k then, (a) If ρ∈ (0,+∞) both series converge, or both diverge. (b) If ρ = 0 and ∑b_k converges then ∑a_k converges. (c) If ρ = +∞ and ∑b_k diverges then ∑a_k diverges. 	Easier to apply than the Direct Comparison Test, but still requires a suitable comparison series to be chosen.
Ratio Test	 If the limit of the ratio of successive terms of a series ∑a_k with <i>nonnegative terms</i> is defined as ρ ≜ lim_{k→∞} a_{k+1}/a_k then, (a) If ρ <1 the series converges. (b) If ρ >1 the series diverges. (c) If ρ = 1 the test is inconclusive. 	Use when terms include factorials or k^{th} powers.
Root Test	 If the limit of the kth root of the kth term of a series Σa_k with nonnegative terms is defined as ρ ≜ lim a_k^{1/k} then, (a) If ρ <1 the series converges. (b) If ρ >1 the series diverges. (c) If ρ =1 the test is inconclusive. 	Use when terms include k^{th} powers.
Absolute Convergence	A series $\sum a_k$ converges absolutely if the series $\sum a_k $ converges.	A series either: diverges, converges conditionally or converges absolutely.
Alternating Series Test	The alternating series $\sum_{k=1}^{\infty} (-1)^{k+1} a_k$, $a_k > 0$, converges if the following two conditions are met (<i>remember that</i> a_k <i>is positive</i>) (a) $a_k \ge a_{k+1}$ for all <i>k</i> . (eventually) ((strictly) monotonically decreasing) (b) $\lim_{k \to \infty} a_k = 0$	Only applicable to alternating series.

Summary of Infinite Series & Limits

Series	Convergence/Divergence
Geometric Series	$\sum_{k=0}^{\infty} ar^{k} = \begin{cases} \frac{a}{(1-r)} \text{ for } r < 1\\ \text{diverges for other } r \end{cases}$
p-Series	$\sum_{k=1}^{\infty} \frac{1}{k^{p}} \begin{cases} \text{converges for } p > 1 \\ \text{diverges for other } p \end{cases}$
Harmonic Series	$\sum_{k=1}^{\infty} \frac{1}{k}$ always diverges
Alternating Harmonic Series	$\sum_{k=1}^{\infty} \frac{\left(-1\right)^{k}}{k} \text{converges conditionally}$

Divergence, Convergence, Absolute Convergence and Conditional Convergence

- A series $\sum a_k$ is said to converge absolutely if $\sum |a_k|$ converges.
- If $\sum a_k$ converges but $\sum |a_k|$ diverges then $\sum a_k$ is said to converge conditionally.
- Every convergent series $\sum a_k$ is either absolutely or conditionally convergent, but we say it simply converges if we have not established that $\sum |a_k|$ converges or diverges.
- If a series does not converge it diverges.

Properties of Absolute and Conditional Convergence

- If a series converges *absolutely* to the value *L*, then any rearrangement of the series will also converge to the value *L*.
- If a series converges *conditionally* to the value *L*, then there exists a rearrangement of the series that converges to any other given real number, as well as rearrangements that diverge.