Probability

A permutation is a distinct sequence of a subset. Being a sequence, the elements and their order distinguish different permutations.
A combination is a distinct subset. Being a set, the elements and not their order distinguish different combinations.
Given a set of n elements from which r are chosen (without replacement) there are ${ }_{n} P_{r}$ permutations and ${ }_{n} C_{r}$ combinations where

$$
{ }_{n} P_{r}=\frac{n!}{(n-r)!} \quad \text { and } \quad{ }_{n} C_{r}=\frac{n!}{(n-r)!r!}=\frac{{ }_{n} P_{r}}{r!} .
$$

A random experiment is an experiment where the result or observation, is not deterministic. That is, it may result in different observations when repeated.

A single result or observation of a random experiment is called an outcome. Some texts require outcomes to be defined so they are equally likely results of a random experiment.

The sample space of an experiment is the set of all possible outcomes of the experiment.
An event is a subset of the sample space or equivalently a set of outcomes. Different events may have different likelihoods of occurring depending on the subset of the sample set chosen.

The notation $n(E)$ indicates the number of possible outcomes of a random experiment in which the event E occurs. If S is the sample set and if each outcome is equally likely, then the probability of event E occurring is $P(E)=n(E) / n(S)$. This is the classic probability rule which requires equally likely outcomes.

If a random experiment is repeated n times and $f(E)$ represents the number of times event E occurs in those n trials, then $\lim _{n \rightarrow \infty} \frac{f(E)}{n}=P(E)$. This is the relative frequency probability rule and it applicable regardless of the likelihood of each outcome.

The conditional probability of event B occurring given event A has already occurred is written as $P(B \mid A)$. Since both events A and B must occur, we begin with $P(B \cap A)$, but since A must have occurred, we "normalize" this by dividing by $P(A)$, effectively reducing the sample space to A. This gives

$$
P(B \mid A)=\frac{P(B \cap A)}{P(A)} .
$$

The probability of the events \boldsymbol{A} or \boldsymbol{B} occurring is $P(A \cup B)=P(A)+P(B)-P(A \cap B)$.

- If A and B are mutually exclusive this means $P(A \cap B)=0 \rightarrow P(A \cup B)=P(A)+P(B)$.

The probability of the events \boldsymbol{A} and \boldsymbol{B} both occurring is $P(A \cap B)=P(A) \cdot P(B \mid A)$

- If A and B are independent events, then $P(B \mid A)=P(B) \rightarrow P(A \cap B)=P(A) \cdot P(B)$.

Independent events cannot be mutually exclusive and vice versa (excluding zero probabilities). In a sense they are opposites: If one of two mutually exclusive events occur this completely determines the probability of the other - it is zero; if one of two independent events occur this has no influence on the probability of the other.

Independent Events $P(B \mid A)=P(B)=1 / 4$

If a sample space can be divided into two where a person has either "a condition", called a positive condition ($C+$), or does not, called a negative condition ($C-$), and the same sample space can also be divided into two where a "test for the condition" is either positive, called a positive test $(T+)$, or negative, called a negative test $(T-)$, then we define the following terms:

- Specificity $=P(T-\mid C-)=\frac{P(T-\cap C-)}{P(C-)}$. This is also called true negative rate.
- Sensitivity $=P(T+\mid C+)=\frac{P(T+\cap C+)}{P(C+)}$. This is also called true positive rate.

