Common Polynomial Factors

Common Factors and Their Expansions

Factored Form = Expanded Form	Name
$(a+b)^2 = a^2 + 2ab + b^2$	Square of Sum
$(a-b)^2 = a^2 - 2ab + b^2$	Square of Difference
$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$	Cube of Sum
$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$	Cube of Difference
$(a+b)(a-b) = a^2 - b^2$	Difference of Squares
$(a-b)(a^2+ab+b^2) = a^3-b^3$	Difference of Cubes
$(a+b)(a^2-ab+b^2) = a^3+b^3$	Sum of Cubes

Sum and Difference of Powers

$$a^{n} - b^{n} = (a - b)(a^{n-1} + a^{n-2}b + a^{n-3}b^{2} + \dots + a^{2}b^{n-3} + ab^{n-2} + b^{n-1}) = (a - b)\sum_{i=1}^{n} a^{n-i}b^{i-1} \text{ for odd integer } n. *$$

$$a^{n} + b^{n} = (a + b)(a^{n-1} - a^{n-2}b + a^{n-3}b^{2} - \dots + a^{2}b^{n-3} - ab^{n-2} + b^{n-1}) = (a + b)\sum_{i=1}^{n} (-1)^{i-1}a^{n-i}b^{i-1} \text{ for odd integer } n.$$

Examples

$$a^{6} + b^{3} = (a^{2})^{3} + b^{3}$$

$$= ((a^{2}) + b)((a^{2})^{2} - a^{2}b + b^{2})$$

$$= (a^{2} + b)(a^{4} - a^{2}b + b^{2})$$

$$= (a^{3} - b^{3})(a^{3} + b^{3})$$

$$= (a^{3} - b^{3})(a^{3} + b^{3})$$

$$= (a^{3} - b^{3})(a^{3} + b^{3})$$

$$= (a^{2} - b)(a^{2} + ab + b^{2})(a + b)(a^{2} - ab + b^{2})$$
If we first formed the difference of cubes, we need to do more work to get the same result,
$$a^{6} - b^{6} = (a^{2})^{3} - (b^{2})^{3}$$

$$= (a^{2} - b^{2})(a^{4} + a^{2}b^{2} + b^{4})$$

$$= (a - b)(a + b)(a^{4} + a^{2}b^{2} + b^{4}).$$
To factor the right product the method of "Factoring Quartics by Completing the Square" is needed. See last example in that section.
$$5a^{5} + 5000a^{2} = 5a^{2}(a^{3} + 1000)$$

$$= 5a^{2}(a + 10)(a^{2} - 10a + 100)$$

$$= (a^{2} + 2b - b^{2} - 1 = a^{2} - (b^{2} - 2b + 1)$$

$$= a^{2} - (b - 1)^{2}$$

$$= (a - (b - 1))(a + (b - 1))$$

$$= (a - b + 1)(a + b - 1)$$

$$1024x^{10} + y^{5} = ((2x)^{2})^{5} + y^{5}$$

$$= (4x^{2} + y)((4x^{2})^{4} - (4x^{2})^{3}y + (4x^{2})^{2}y^{2} - 4x^{2}y^{3} + y^{4})$$

$$= (4x^{2} + y)(256x^{8} - 64x^{6}y + 16x^{4}y^{2} - 4x^{2}y^{3} + y^{4})$$

^{*} The difference of powers is also valid for even positive integer exponents. However, it is not as effective in factoring as treating such cases as the differences of squares, $(a^{n/2})^2 - (b^{n/2})^2$ repeatedly until reaching a - b.

Factoring by Grouping

Look for groupings that allow a common factor to be identified. Try looking for two pairs of coefficients with the same ratio, the pairs *might* form a group that allows factoring.

Examples

Factoring Quartics by Completing the Square

If a polynomial can be expressed in the form $ax^{4n} + bx^{2n} + c$ and does not factor as a quadratic in form, under some special conditions it may be possible to complete the square to form a difference of squares. The conditions required to do this are,

- Both a and c are perfect squares.
- A term d exists such that b-d is a perfect square so we can add and subtract dx^{2n} from the polynomial to form the difference of two perfect squares, $(ax^{4n} + dx^{2n} + c) (d-b)x^{2n}$. Completing the square of the first three terms above gives $d = \pm 2\sqrt{ac}$.

Examples

$$x^{4} - 19x^{2} + 25 = x^{4} - 2\sqrt{25}x^{2} + 25 - 19x^{2} + 2\sqrt{25}x^{2}$$

$$= x^{4} - 10x^{2} + 25 - (19 - 10)x^{2}$$

$$= x^{4} - 10x^{2} + 25 - 9x^{2}$$

$$= (x^{2} - 5)^{2} - (3x)^{2}$$

$$= (x^{2} - 3x - 5)(x^{2} + 3x - 5)$$

$$= (x^{4} + 6x^{2} + 25 = x^{4} + 2\sqrt{25}x^{2} + 25 + 6x^{2} - 2\sqrt{25}x^{2}$$

$$= x^{4} + 10x^{2} + 25 - 4x^{2}$$

$$= x^{4} + 10x^{2} + 25 - 4x^{2}$$

$$= (x^{2} + 5)^{2} - (2x)^{2}$$

$$= (2(x^{2} + 3))^{2} - (5x)^{2}$$

$$= (2(x^{2} + 3) - 5x)(2(x^{2} + 3) + 5x)$$

$$= (2x^{2} - 5x + 6)(2x^{2} + 5x + 6)$$

$$a^{4} + a^{2}b^{2} + b^{4} = a^{4} + 2a^{2}b^{2} + b^{4} - 2a^{2}b^{2} + a^{2}b^{2}$$

$$= (a^{2} + ab + b^{2})(a^{2} - ab + b^{2})$$