Important Definitions and Theorems

Definitions

Limit

Given a function *f* defined in an open interval containing the number *a*, except that *f* need not be defined at *a*, if for any number $\varepsilon > 0$ there exists a number $\delta > 0$ such that

$$|f(x)-L| < \varepsilon$$
 when $0 < |x-a| < \delta$,

then the limit of f as x approaches a equals L, written $\lim f(x) = L$.

Continuity

A function f is continuous at c if all the following are true:

- 1) f(c) is defined
- 2) $\lim f(x)$ exists
- 3) $\lim f(x) = f(c).$

Increasing, Decreasing and Constant Functions

- 1) f is **increasing*** on an interval *I* if f(b) > f(a) for all *a* and *b* in *I* where b > a.
- 2) f is **decreasing**^{*} on an interval *I* if f(b) < f(a) for all *a* and *b* in *I* where b > a.
- 3) *f* is **constant** on an interval *I* if f(a) = f(b) for all *a* and *b* in *I*.

* Some texts call 1 and 2 above strictly increasing and strictly decreasing. Without this qualifier they use $f(b) \ge f(a)$ for 1 and $f(b) \le f(a)$ for 2. With this definition a constant function is both increasing and decreasing.

Local (Relative) Extrema

- 1) f has a local maximum^{*} at c if there exists an open interval I containing c where $f(c) \ge f(x)$ for all x in I.
- 2) *f* has a **local minimum**^{*} at *c* if there exists an open interval *I* containing *c* where $f(c) \le f(x)$ for all *x* in *I*.
- * Some authors allow *c* to be the endpoint of a closed domain. In this case *I* is a half-open interval. This allows endpoints to be candidates for local extrema which are excluded in the definition above by the requirement that *I* to be an open interval.

Absolute (Global) Extrema

- 1) *f* has an **absolute maximum** at *c* in interval *I* if $f(c) \ge f(x)$ for all *x* in *I*.
- 2) *f* has an **absolute minimum** at *c* in interval *I* if $f(c) \le f(x)$ for all *x* in *I*.

Concavity

If f is differentiable on an open interval I, then

- 1) f is **concave up** on I if f' is increasing on I.
- 2) f is concave down on I if f' is decreasing on I.

Point of Inflection

If f is continuous on an open interval containing c and if f changes the direction of its concavity at point (c, f(c)) then f is said to have

an inflection point at c and the point (c, f(c)) on the graph of f is an inflection point of f.

- If the point occurs where the derivative is infinite it is called a vertical inflection point.
- If the point occurs where the derivative is zero it is called a stationary inflection point or horizonal inflection point.

Cusps and Corners

Cusps and **corners** occur on a *continuous* interval at a point where the first derivative does not exist *and* the left and right sided derivatives are distinct.

Theorems

Intermediate Value Theorem

If function *f* is *continuous* on an interval [*a*, *b*] and $f(a) \le L \le f(b)$ then there exists a value *c* in [*a*, *b*] such that f(c) = L. In other words, *f* will take on every value between f(a) and f(b) over the interval [*a*, *b*].

Extreme Value Theorem

If function f is continuous on an interval [a, b] then there exists both an absolute maximum and absolute minimum of f on [a, b].

Rolle's Theorem

If function *f* is continuous on an interval [*a*, *b*] and differentiable on the interval (*a*, *b*) and f(a) = f(b) = 0 then there exists a value *c* in (*a*, *b*) such that f'(c) = 0.

Mean-Value Theorem

If function f is continuous on an interval [a, b] and differentiable on the interval (a, b) then there exists a value c in (a, b) such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Mean-Value Theorem for Integrals

If function f is continuous on an interval [a, b] then there exists a value c in (a, b) such

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) dx \triangleq f_{av}$$

The value f_{av} is defined as the average value of the function f on the interval [a, b].

Fundamental Theorem of Calculus

i. If function f is continuous on [a, b] and F is any antiderivative of f on [a, b], then $\int_{a}^{b} f(x)dx = F(b) - F(a)$.

ii. If function f is continuous on [a, b] then for any constant c in [a, b] the function $F(x) \triangleq \int_{a}^{x} f(t) dt \ x \in [a, b]$ is an

antiderivative of f and F is continuous on [a, b], differentiable on (a, b) and F'(x) = f(x).

A geometric explanation of the relationship between area, the derivative, and anti-derivative (integral): Given a function *f* that is continuous on some interval, let *F* describe the area of the region bounded between *f* and the *x*-axis over the interval. Chose a point *x* and a nearby point x + h in the interval. The area of this region if then F(x+h) - F(x). This area can also be approximated as $f(x+h) \cdot h$ for small *h* so,

$$\frac{F(x+h) - F(x) \approx f(x+h) \cdot h}{\frac{F(x+h) - F(x)}{h}} \approx f(x+h).$$

If we take $\lim h \to 0$ the approximation becomes exact, the left side becomes the F'(x) and the right side f(x), thus F'(x) = f(x). This shows that the derivative of the function that describes the area under a curve is the function that describes that curve.

One-to-One Theorem

If the domain of function *f* is an open interval and its derivative is either always positive or always negative, then *f* is one-to-one and it follows that its inverse is differentiable for all values in the *range* of *f* (which is the domain of f^{-1}).

Derivative of Inverse Function Theorem

Given a function f that has an inverse
$$f^{-1} = g$$
, if f is differentiable at $g(x)$ and $f'(g(x)) \neq 0$ then $g'(x) = \frac{1}{f'(g(x))}$

If we call $y = f^{-1}(x) \rightarrow x = f(y)$ this can be expressed as $\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}}$.

In other words, the slopes of the graphs of f and f^{-1} are multiplicative inverses (where they are both defined). To find the slope of f^{-1} at a solve f(b) = a for b and then the slope is $(f^{-1})'(a) = \frac{1}{f'(b)}$, where a = f(b).