Important Definitions and Theorems

Definitions

Limit

Given a function f defined in an open interval containing the number a, except that f need not be defined at a, if for any number $\varepsilon>0$ there exists a number $\delta>0$ such that

$$
|f(x)-L|<\varepsilon \text { when } 0<|x-a|<\delta
$$

then the limit of f as x approaches a equals L, written $\lim _{x \rightarrow a} f(x)=L$.

Continuity

A function f is continuous at c if all the following are true:

1) $f(c)$ is defined
2) $\lim _{x \rightarrow c} f(x)$ exists
3) $\lim _{x \rightarrow c} f(x)=f(c)$.

Increasing, Decreasing and Constant Functions

1) f is increasing* on an interval I if $f(b)>f(a)$ for all a and b in I where $b>a$.
2) f is decreasing* on an interval I if $f(b)<f(a)$ for all a and b in I where $b>a$.
3) f is constant on an interval I if $f(a)=f(b)$ for all a and b in I.

* Some texts call 1 and 2 above strictly increasing and strictly decreasing. Without this qualifier they use $f(b) \geq f(a)$ for 1 and $f(b) \leq f(a)$ for 2 . With this definition a constant function is both increasing and decreasing.

Local (Relative) Extrema

1) f has a local maximum* at c if there exists an open interval I containing c where $f(c) \geq f(x)$ for all x in I.
2) f has a local minimum* at c if there exists an open interval I containing c where $f(c) \leq f(x)$ for all x in I.

* Some authors allow c to be the endpoint of a closed domain. In this case I is a half-open interval. This allows endpoints to be candidates for local extrema which are excluded in the definition above by the requirement that I to be an open interval.

Absolute (Global) Extrema

1) f has an absolute maximum at c in interval I if $f(c) \geq f(x)$ for all x in I.
2) f has an absolute minimum at c in interval I if $f(c) \leq f(x)$ for all x in I.

Concavity

If f is differentiable on an open interval I, then

1) f is concave up on I if f^{\prime} is increasing on I.
2) f is concave down on I if f^{\prime} is decreasing on I.

Point of Inflection

If f is continuous on an open interval containing c and if f changes the direction of its concavity at point $(c, f(c))$ then f is said to have an inflection point at \mathbf{c} and the point $(c, f(c))$ on the graph of f is an inflection point of f.

- If the point occurs where the derivative is infinite it is called a vertical inflection point.
- If the point occurs where the derivative is zero it is called a stationary inflection point or horizonal inflection point.

Cusps and Corners

Cusps and corners occur on a continuous interval at a point where the first derivative does not exist and the left and right sided derivatives are distinct.

Theorems

Intermediate Value Theorem

If function f is continuous on an interval $[a, b]$ and $f(a) \leq L \leq f(b)$ then there exists a value c in $[a, b]$ such that $f(c)=L$.
In other words, f will take on every value between $f(a)$ and $f(b)$ over the interval $[a, b]$.

Extreme Value Theorem

If function f is continuous on an interval $[a, b]$ then there exists both an absolute maximum and absolute minimum of f on $[a, b]$.

Rolle's Theorem

If function f is continuous on an interval $[a, b]$ and differentiable on the interval (a, b) and $f(a)=f(b)=0$ then there exists a value c in (a, b) such that $f^{\prime}(c)=0$.

Mean-Value Theorem

If function f is continuous on an interval $[a, b]$ and differentiable on the interval (a, b) then there exists a value c in (a, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Mean-Value Theorem for Integrals

If function f is continuous on an interval $[a, b]$ then there exists a value c in (a, b) such

$$
f(c)=\frac{1}{b-a} \int_{a}^{b} f(x) d x \triangleq f_{a v} .
$$

The value $f_{a v}$ is defined as the average value of the function f on the interval $[a, b]$.

Fundamental Theorem of Calculus

i. If function f is continuous on $[a, b]$ and F is any antiderivative of f on $[a, b]$, then $\int_{a}^{b} f(x) d x=F(b)-F(a)$.
ii. If function f is continuous on $[a, b]$ then for any constant c in $[a, b]$ the function $F(x) \triangleq \int_{c}^{x} f(t) d t x \in[a, b]$ is an antiderivative of f and F is continuous on $[a, b]$, differentiable on (a, b) and $F^{\prime}(x)=f(x)$.

A geometric explanation of the relationship between area, the derivative, and anti-derivative (integral): Given a function f that is continuous on some interval, let F describe the area of the region bounded between f and the x-axis over the interval. Chose a point x and a nearby point $x+h$ in the interval. The area of this region if then $F(x+h)-F(x)$. This area can also be approximated as $f(x+h) \cdot h$ for small h so,

$$
\begin{aligned}
& F(x+h)-F(x) \approx f(x+h) \cdot h \\
& \frac{F(x+h)-F(x)}{h} \approx f(x+h) .
\end{aligned}
$$

If we take $\lim h \rightarrow 0$ the approximation becomes exact, the left side becomes the $F^{\prime}(x)$ and the right side $f(x)$, thus $F^{\prime}(x)=f(x)$. This shows that the derivative of the function that describes the area under a curve is the function that describes that curve.

One-to-One Theorem

If the domain of function f is an open interval and its derivative is either always positive or always negative, then f is one-to-one and it follows that its inverse is differentiable for all values in the range of f (which is the domain of f^{-1}).

Derivative of Inverse Function Theorem

Given a function f that has an inverse $f^{-1}=g$, if f is differentiable at $g(x)$ and $f^{\prime}(g(x)) \neq 0$ then $g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))}$.
If we call $y=f^{-1}(x) \rightarrow x=f(y)$ this can be expressed as $\frac{d y}{d x}=\frac{1}{\frac{d x}{d y}}$.
In other words, the slopes of the graphs of f and f^{-1} are multiplicative inverses (where they are both defined). To find the slope of f^{-1} at a solve $f(b)=a$ for b and then the slope is $\left(f^{-1}\right)^{\prime}(a)=\frac{1}{f^{\prime}(b)}$, where $a=f(b)$.

