Binomial Theorem

The Binomial Theorem relates a binomial raised to a non-negative integer power to a series named the binomial series.

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k}, n \text { is a non-negative integer, }
$$

and $\binom{n}{k}=\frac{n!}{(n-k)!k!}$ is called the binomial coefficient; it gives the coefficients in the expansion of a binomial raised to a

Binomial Coefficient Related Facts

- The term number is one more than the ascending exponent \rightarrow there is one more term than the degree of the binomial.
- The next coefficient can be found from the current coefficient by dividing the product of the current coefficient and its associated descending exponent by the current term number, e.g., term 4 coefficient above is $21 \cdot 5 / 3=35$.
- The coefficients are symmetric about the center term(s).
- The coefficients sum to 2^{n}. This can be shown by setting a and b equal to 1 .
- The coefficients form Pascals Triangle where each entry is the sum of the nearest two entries above it:

- The coefficient is how many times the product $a^{n-k} b^{k}$ appears in the expansion of $(a+b)^{n}$ before summing like terms. This is the same as the enumeration of the ways k items can be chosen, without regard to order and without replacing items, from n distinct items (also the same as $n-k$ items chosen out of n because of the symmetry of the binomial coefficient).

Finding Terms in a Binomial Expansion

Example: Given the binomial $\left(2 x^{3}-5 y\right)^{13}$ find a) the term containing x^{27} and its term number; b) The $8^{\text {th }}$ term; c) the term containing x^{8}.
a) i) First identify the a and b in the notation $(a+b)^{n}: a=2 x^{3}$ and $b=-5 y$.
ii) Then determine the exponent needed by $a: 27 / 3=9$.

$$
\binom{13}{13-9} a^{9} b^{13-9}=\binom{13}{4} a^{9} b^{4}=\frac{13!}{4!9!}\left(2 x^{3}\right)^{9}(-5 y)^{4}=715\left(2^{9} x^{27}\right)(-5)^{4} y^{4}=228800000 x^{27} y^{4}
$$

iii) The term number is one more than the exponent of b so this is the $5^{\text {th }}$ term.
b) The term numbers ascend from 1 while the b exponent ascends from 0 so the $8^{\text {th }}$ term contains b^{7} and so it also contains $a^{13-7}=a^{6}$.

$$
\binom{13}{7} a^{6} b^{7}=\frac{13!}{7!6!}\left(2 x^{3}\right)^{6}(-5 y)^{7}=1716\left(64 x^{18}\right)\left(-78125 y^{7}\right)=-8580000000 x^{18} y^{7}
$$

c) The exponent needed by a is $8 / 3=2 . \overline{33}$. Since this is not an integer and the binomial expansion defined above only has non-negative integer exponents there cannot be a term containing x^{8}.

