Binomial Theorem

The **Binomial Theorem** relates a binomial raised to a non-negative integer power to a series named the binomial series.

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$
, *n* is a non-negative integer,

and $\binom{n}{k} = \frac{n!}{(n-k)!k!}$ is called the binomial coefficient; it gives the coefficients in the expansion of a binomial raised to a

power, e.g., $(a+b)^7 = a^7 + 7a^6b + 21a^5b^2 + 35a^4b^3 + 35a^3b^4 + 21a^2b^5 + 7ab^6 + b^7$. term # 1 2 3 4 5 6 7 8.

Binomial Coefficient Related Facts

- The term number is one more than the ascending exponent \rightarrow there is one more term than the degree of the binomial.
- The next coefficient can be found from the current coefficient by dividing the product of the current coefficient and its associated descending exponent by the current term number, e.g., term 4 coefficient above is $21 \cdot 5/3 = 35$.
- The coefficients are symmetric about the center term(s).
- The coefficients sum to 2^n . This can be shown by setting *a* and *b* equal to 1.
- The coefficients form Pascals Triangle where each entry is the sum of the nearest two entries above it:

							1								$(a + b)^0$
						1		1							$(a + b)^1$
					1		2		1						$(a + b)^2$
				1		3		3		1					$(a + b)^3$
			1		4		6		4		1				$(a + b)^4$
		1		5		10		10		5		1			$(a + b)^5$
	1		6		15		20		15		6		1		$(a + b)^{6}$
1		7		21		35		35		21		7		1	$(a+b)^{7}$

• The coefficient is how many times the product $a^{n-k}b^k$ appears in the expansion of $(a+b)^n$ before summing like terms. This is the same as the enumeration of the ways k items can be chosen, without regard to order and without replacing items, from n distinct items (also the same as n-k items chosen out of n because of the symmetry of the binomial coefficient).

Finding Terms in a Binomial Expansion

Example: Given the binomial $(2x^3 - 5y)^{13}$ find a) the term containing x^{27} and its term number; b) The 8th term; c) the term containing x^8 .

- a) i) First identify the *a* and *b* in the notation $(a+b)^n : a = 2x^3$ and b = -5y.
 - ii) Then determine the exponent needed by a: 27/3 = 9.

$$\binom{13}{13-9}a^{9}b^{13-9} = \binom{13}{4}a^{9}b^{4} = \frac{13!}{4!9!}(2x^{3})^{9}(-5y)^{4} = 715(2^{9}x^{27})(-5)^{4}y^{4} = 228800000x^{27}y^{4}$$

- iii) The term number is one more than the exponent of b so this is the 5th term.
- b) The term numbers ascend from 1 while the *b* exponent ascends from 0 so the 8th term contains b^7 and so it also contains $a^{13-7} = a^6$.

$$\binom{13}{7}a^{6}b^{7} = \frac{13!}{7!6!}(2x^{3})^{6}(-5y)^{7} = 1716(64x^{18})(-78125y^{7}) = -858000000x^{18}y^{7}$$

c) The exponent needed by *a* is $8/3 = 2.\overline{33}$. Since this is not an integer and the binomial expansion defined above only has non-negative integer exponents there cannot be a term containing x^8 .